Tag Archives: nasa

Organovo Collaborates With Professor Melissa Little for Kidney Tissue Research

transforming treatment_cover

SAN DIEGO and MELBOURNE, Australia and SPRINGFIELD, Va., Jan. 24, 2017 (GLOBE NEWSWIRE) — Organovo Holdings, Inc. (NASDAQ:ONVO) (“Organovo”), a three-dimensional biology company focused on delivering scientific and medical breakthroughs using its 3D bioprinting technology, today announced a collaboration with Professor Melissa Little and the Murdoch Childrens Research Institute, The Royal Children’s Hospital, Melbourne, Australia to develop an architecturally correct kidney for potential therapeutic applications.  The collaboration has been made possible by a generous gift from the Methuselah Foundation (“Methuselah”) as part of its ongoing University 3D Bioprinter Program.

“Partnerships with world-class institutions can accelerate groundbreaking work in finding cures for critical unmet disease needs and the development of implantable therapeutic tissues,” said Keith Murphy, CEO, Organovo.  “This collaboration with Professor Little’s lab is another important step in this direction.  With the devoted and ongoing support of the Methuselah Foundation, leading researchers are able to leverage Organovo’s powerful technology platform to achieve significant breakthroughs.”

“We have developed an approach for recreating human kidney tissue from stem cells,” said Professor Melissa Little, Theme Director of Cell Biology at Murdoch Childrens Research Institute.  “Using Organovo’s bioprinter will give us the opportunity to bioprint these cells into a more accurate model of the kidney.  While initially important for modelling disease and screening drugs, we hope that this is also the first step towards regenerative medicine for kidney disease.  We are very grateful to Organovo and the Methuselah Foundation for this generous support, which will enable us to advance our research with the first Organovo bioprinter in the southern hemisphere.”

Under Methuselah Foundation’s University 3D Bioprinter Program, Methuselah is donating at least $500,000 in direct funding to be divided among several institutions for Organovo bioprinter research projects.  This funding will cover budgeted bioprinter costs and key aspects of project execution.

“We at the Methuselah Foundation have been a long-time supporter of academic and industry research in 3D bioprinting, regenerative medicine, and tissue engineering,” said David Gobel, CEO, Methuselah Foundation. “Our University 3D Bioprinter Program puts Organovo’s breakthrough 3D bioprinting technology in the hands of the brightest scientists at tissue engineering centers of excellence.”

About Organovo Holdings, Inc.

Organovo designs and creates functional, three-dimensional human tissues for use in medical research and therapeutic applications.  The Company develops 3D human tissue models through internal development and in collaboration with pharmaceutical, academic and other partners.  Organovo’s 3D human tissues have the potential to accelerate the drug discovery process, enabling treatments to be developed faster and at lower cost.  The Company’s ExVive Human Liver and Kidney Tissues are used in toxicology and other preclinical drug testing.  The Company also actively conducts early research on specific tissues for therapeutic use in direct surgical applications.  In addition to numerous scientific publications, the Company’s technology has been featured in The Wall Street Journal, Time Magazine, The Economist, Forbes, and numerous other media outlets.  Organovo is changing the shape of life science research and transforming medical care.  Learn more at www.organovo.com.

About Murdoch Childrens Research Institute

Murdoch Childrens undertakes research into infant, child and adolescent health.  As the largest child health research institute in Australia, our 1500 researchers are working hard to translate the knowledge we create from our research into effective prevention, early intervention and treatments for children.  We strive for a healthier community, fewer sick kids visiting hospitals, and the best possible care for children who unfortunately become ill.  The Murdoch Childrens has a proud history of scientific discovery since its inception in 1986, and is currently based at The Royal Children’s Hospital in Melbourne, Australia.  For more information please visit: www.mcri.edu.au.

About Methuselah Foundation

The Methuselah Foundation is a non-profit medical charity working to create a world where 90 year olds can have the health profile of 50 year olds, by 2030.  By opportunistically leveraging resources, enabling partnerships, and awarding prizes and grants, we accelerate disruptive developments in biomedical engineering that will eradicate needless suffering and extend healthy human life.  For more information please visit: www.methuselahfoundation.org and www.neworgan.org.

Making memories stronger and more precise during aging

Young neurons (pink), responsible for encoding new memories, must compete with mature neurons (green) to survive and integrate into the hippocampal circuit. Photo courtesy of Kathleen McAvoy, Sahay Lab.
Young neurons (pink), responsible for encoding new memories, must compete with mature neurons (green) to survive and integrate into the hippocampal circuit. Photo courtesy of Kathleen McAvoy, Sahay Lab.

HSCI researchers identify new mechanisms by which new neurons sharpen memories

By Hannah L. Robbins, HSCI Communications

When it comes to the billions of neurons in your brain, what you see at birth is what get — except in the hippocampus. Buried deep underneath the folds of the cerebral cortex, neural stem cells in thehippocampus continue to generate new neurons, inciting a struggle between new and old as the new attempts to gain a foothold in the memory-forming center of the brain.

In a study published online today in Neuron, Harvard Stem Cell Institute (HSCI) researchers atMassachusetts General Hospital and the Broad Institute of MIT and Harvard in collaboration with an international team of scientists found they could bias the competition in favor of the newly generated neurons.

“The hippocampus allows us to form new memories of ‘what, when and where’ that help us navigate our lives,” said HSCI Principal Faculty member and the study’s corresponding author, Amar Sahay, PhD, “and neurogenesis—the generation of new neurons from stem cells—is critical for keeping similar memories separate.”

As the human brain matures, the connections between older neurons become stronger, more numerous, and more intertwined, making integration for the newly formed neurons more difficult. Neural stem cells become less productive, leading to a decline in neurogenesis. With fewer new neurons to help sort memories, the aging brain can become less efficient at keeping separate and faithfully retrieving memories.

The research team selectively overexpressed a transcription factor, Klf9, only in older neurons in mice, which eliminated more than one-fifth of their dendritic spines, increased the number of new neurons that integrated into the hippocampus circuitry by two-fold, and activated neural stem cells.   READ MORE

Vascular Tissue Challenge Introduction Webinar

organovo-image

Event Description

The Vascular Tissue Challenge is a $500,000 prize purse for the creation ofthick, human vascularized organ tissue in an in-vitro environment that maintains metabolic functionality similar to in vivo native cells throughout a 30-day trial period. The Methuselah Foundation’s New Organ Alliance and NASA’s Centennial Challenges Program have partnered to create this challenge with the goal of advancing research on human physiology, fundamental space biology, and medicine taking place both on the Earth and the ISS National Laboratory.

Additionally, the Center for Advancement of Science in Space (CASIS) will be providing an additional “Innovations in Space” Award covering $200,000 in hardware costs and the launch costs to send one team’s vascular tissue experiment to the International Space Station that could further their research in the field.

This introductory webinar is for anyone interested in potentially competing for the Vascular Tissue Challenge. In the webinar we will discuss the following items:

  1. Introduction to the Methuselah Foundation, New Organ Alliance, and NASA Centennial Challenges.
  2. Goals of the Vascular Tissue Challenge.
  3. Rules & evaluation criteria review.
  4. Innovations in Space Awardresearch opportunity using microgravity environment onboard the ISS.
  5. Processes and Procedures to compete.
  6. Question & Answer session.

Registration is free, but is required. The web address for the webinar will be emailed to webinar registrants prior to the event.

WHEN

Episode 007 – Control Alt Delete Cancer Research into longevity, human health, ageing, New Organ Research including bioprinting liver, kidney, and other medical pursuits

 

Control Alt Del

Hello and welcome to Episode 7!  On this episode, we’ll talk with Dr. Haroldo Silva and David Halvorsen of the SENS Research Foundation.  They’ve launched a new crowdfunding campaign designed to attack and stop cancer using a new approach.  You’ll hear what that approach is, why they think it has a good chance of success, and you can help in the fight.

If you’d like to comment on the show, have a question or want to reach us, write Rod.Wheaton@MFoundation.org

To learn how you can help the Methuselah Foundation continue its mission to extend heathy human life, CLICK HERE

BREAKING: Methuselah Partnering with NASA

June 13, 2016

nasa-earth-day-gallery-13

NASA Challenge Aims to Grow Human Tissue to Aid in Deep Space Exploration

NASA, in partnership with the nonprofit Methuselah Foundation’s New Organ Alliance, is seeking ways to advance the field of bioengineering through a new prize competition.

The Vascular Tissue Challenge offers a $500,000 prize to be divided among the first three teams that successfully create thick, metabolically-functional human vascularized organ tissue in a controlled laboratory environment.

“The humans who will be our deep space pioneers are our most important resource on the Journey to Mars and beyond,” said Steve Jurczyk, associate administrator for NASA’s Space Technology Mission Directorate in Washington. “The outcome of this challenge has the potential to revolutionize healthcare on Earth, and could become part of an important set of tools used to minimize the negative effects of deep space on our future explorers.”

Related cells that are joined together are collectively referred to as tissue, and these cells work together as organs to accomplish specific functions in the human body. Blood vessels around the cells vascularize, providing nutrients to the tissue to keep it healthy. The vascularized, thick-tissue models resulting from this challenge will function as organ analogs, or models, that can be used to study deep space environmental effects, such as radiation, and to develop strategies to minimize the damage to healthy cells. 

Studying these effects will help create ways to mitigate negative effects of space travel on humans during long duration, deep space missions. On Earth, the vascularized tissue could be used in pharmaceutical testing or disease modeling. The challenge also could accelerate new research and development in the field of organ transplants.

When the Wright Brothers discovered how to control aircraft during flight for aviation in the early 1900s, there was an explosion of progress after this key barrier was removed”, said Dave Gobel, chief executive officer of the Methuselah Foundation. “In the same way, once the ‘vascularization limit’ is solved, via the NASA Vascular Tissue Challenge, there inevitably will be an historic advance in progress and commercialization of tissue engineering applications to everyone’s benefit.”

Competitors must produce vascularized tissue that is more than .39 inches (1 centimeter) in thickness and maintains more than 85 percent survival of the required cells throughout a 30-day trial period. Teams must demonstrate three successful trials with at least a 75 percent success rate to win an award. In addition to the laboratory trials, teams also must submit a proposal that details how they would further advance some aspect of their research through a microgravity experiment that could be conducted in the U.S. National Laboratory on the International Space Station.

The new challenge was announced as part of White House Organ Summit, which highlighted efforts to improve outcomes for individuals waiting for organ transplants and support for living donors. In a related initiative, the Center for the Advancement of Science in Space (CASIS), which manages the International Space Station U.S. National Laboratory, announced a follow-on prize competition in partnership with the New Organ Alliance and the Methuselah Foundation that will provide researchers the opportunity to conduct research in microgravity conditions. CASIS will provide one team up to $200,000 in flight integration support costs, along with transportation to the ISS National Laboratory, support on station and return of experimental samples to Earth. CASIS also announced the winners of the $1 million 3-D Microphysiological Systems for Organs-On-Chips Grand Challenge.

The Vascular Tissue Challenge prize purse is provided by NASA’s Centennial Challenges Program, part of NASA’s Space Technology Mission Directorate. Centennial Challenges, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama, is NASA’s citizen inventor prize program that invites the nation to help advance the technologies that will enable us to go to Mars and beyond, as well as improve life on Earth. The New Organ Alliance, which is administering the competition on behalf of NASA, is a nonprofit organization focused on regenerative medicine research and development to benefit human disease research and tissue engineering.

For information about the Methuselah Foundation’s New Organ Alliance, official challenge documents, rules and schedule of events, visit:

https://neworgan.org/vtc-prize.php

For more information about the Vascular Tissue Challenge, visit:

http://www.nasa.gov/vtchallenge

Episode 006 – Could Cryopreservation for Human Organs Save 700,000 – 900,000 Lives a Year?

 

Transplanting Organs

Join us on this episode of the Methuselah 300 Podcast as we interview Dr. Sebastian Eriksson Giwa;  co-founder and chairman of the Organ Preservation Alliance and co-founder and CEO of Sylvatica Biotech.  Dr. Giwa will discuss how Cryopreservation could transform and revolutionize transplantation Currently at least 1 in 5 people on the organ waiting list die due to the inability of keeping organs viable for transport, resulting in 700,000 deaths a year by some estimates.  Dr Giwa and his team want to change that…

The Defense Department, National Science Foundation and even the White House are beginning to recognize the need and potential of this scientific frontier , and scientists from around the world to an increasing decree are tackling the remaining challenges.  

Will you join us?  You can find out how to become a foundation supporter at  Mfoundation.org.

We thank you for your support now and in the future!

Sincerely,

Methuselah Foundation

methuselah_itunes_logo

Episode 005 with Dr John Geibel; Yale University How Yale's Team of Researchers are Moving Toward 3-D Printable Organs

 

Faculty portraits
John Giebel, Director of Surgical Research, Yale University

On this week’s podcast, join us as we talk with Dr John Geibel, Director of Surgical Research and Professor of Department of Cellular and Molecular Physiology at Yale University.  Discover how his team is working hard to develop the first iterations of 3-D printable organs, a goal that will revolutionize the medical organ industry and save thousands upon thousands of lives.

To keep up with the latest developments, join our newsletter HERE

To find out how you can be a part of the Methuselah Foundation and support our work, go to Mfoundation.org or click HERE

Methuselah 300 Podcast Episode 004: Is a Synthetic Liver on the Horizon? With Dr Bryon Petersen A Synthetic Liver Could Bridge the Gap Between Now and the Development of an Real Tissue New Organ

Could this device bridge the gap to new organs?

Join us on this week’s podcast as we interview Dr. Bryon Petersen, who is researching and developing a new device that could bridge the gap for those awaiting a new liver so that those in need can have a quality of life impossible for them now.  You’ll here about where he is in the stage of development, and what timeline he is working toward.

To keep up with the latest developments, join our newsletter HERE

To find out how you can be a part of the Methuselah Foundation and support our work, go to Mfoundation.org or click HERE

methuselah_itunes_logo

Longevity, ageing, research, cancer, new organs, bioprinting, nasa, sens, age, human, health,kidney,liver,transplant,organ,doctor,grants